skip to main content


Search for: All records

Creators/Authors contains: "Lechtreck, Karl F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full‐length (~11 μm) axonemes ofChlamydomonas. Known compoents of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady‐state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length‐dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP‐tagged FAP93 demonstrates that FAP93 is stably anchored in axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.

     
    more » « less
  2. MOTALEB, MD A (Ed.)